Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 10, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
This paper reports on a preliminary experimental study on binder jetting 3D printing of biomass–fungi composite materials. Biomass–fungi composite materials have potential applications in the packaging, furniture, and construction industries. Biomass particles (prepared from agricultural residues) act as the substrate of the composite materials. The filamentous roots of fungi intertwine and bind biomass particles together. In this study, the biomass (hemp hurd) powders used had two distinct average particle sizes. The liquid binder used contained fungi (Trametes versicolor) cells. T-shaped samples were printed using a lab-designed binder jetting setup. Printed samples were kept inside an incubator oven for four days to allow fungi to grow. Afterward, loose biomass powder was removed from the T-shaped samples. The samples were then kept inside the incubator oven for eight more days to allow further fungal growth. The samples were subsequently placed in an oven at 120 °C for four hours to terminate all fungal activity in the samples. SEM micrographs were taken of the cross-sectional surfaces of the samples. The micrographs showed a significant presence of fungi hyphae inside the printed samples, providing evidence of the binding of biomass particles by the hyphae.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Products made from petroleum-derived plastic materials are linked to many environmental problems, such as greenhouse gas emissions and plastic pollution. It is desirable to manufacture products from environmentally friendly materials instead of petroleum-based plastic materials. Products made from biomass–fungi composite materials are biodegradable and can be utilized for packaging, construction, and furniture. In biomass–fungi composite materials, biomass particles (derived from agricultural wastes) serve as the substrate, and the fungal hyphae network binds the biomass particles together. There are many reported studies on the 3D printing of biomass–fungi composite materials. However, there are no reported studies on the biodegradation of 3D-printed samples from biomass–fungi composite materials. In this study, two types of biomass materials were used to prepare printable mixture hemp hurd and beechwood sawdust. The fungi strain used was Trametes versicolor. Extrusion based 3D printing was used to print samples. 3D-printed samples were left for five days to allow fungi to grow. The samples were then dried in an oven for 4 h at 120 °C to kill all the fungi in the samples. The samples were buried in the soil using a mesh bag and kept in an environmental chamber at 25 °C with a relative humidity of 48%. The weight of these samples was measured every week over a period of three months. During the testing period, the hemp hurd test samples lost about 33% of their original weight, whereas the beechwood sawdust samples lost about 30% of their original weight. The SEM (scanning electron microscope) micrographs showed the presence of zygospores in the test samples, providing evidence of biodegradation of the test samples in the soils. Additionally, the difference in peak intensity between the control samples and test samples (for both hemp hurd and beechwood sawdust) showed additional evidence of biodegradation of the test samples in the soils.more » « less
-
Biomass–fungi composite materials primarily consist of biomass particles (sourced from agricultural residues) and a network of fungal hyphae that bind the biomass particles together. These materials have potential applications across diverse industries, such as packaging, furniture, and construction. 3D printing offers a new approach to manufacturing parts using biomass–fungi composite materials, as an alternative to traditional molding-based methods. However, there are challenges in producing parts with desired quality (for example, geometric accuracy after printing and height shrinkage several days after printing) by using 3D printing-based methods. This paper introduces an innovative approach to enhance part quality by incorporating ionic crosslinking into the 3D printing-based methods. While ionic crosslinking has been explored in hydrogel-based bioprinting, its application in biomass–fungi composite materials has not been reported. Using sodium alginate (SA) as the hydrogel and calcium chloride as the crosslinking agent, this paper investigates their effects on quality (geometric accuracy and height shrinkage) of 3D printed samples and physiochemical characteristics (rheological, chemical, and texture properties) of biomass–fungi composite materials. Results show that increasing SA concentration led to significant improvements in both geometric accuracy and height shrinkage of 3D printed samples. Moreover, crosslinking exposure significantly enhanced hardness of the biomass–fungi mixture samples prepared for texture profile analysis, while the inclusion of SA notably improved cohesiveness and springiness of the biomass–fungi mixture samples. Furthermore, Fourier transform infrared spectroscopy confirms the occurrence of ionic crosslinking within 3D printed samples. Results from this study can be used as a reference for developing new biomass–fungi mixtures for 3D printing in the future.more » « less
An official website of the United States government
